Early sequence of cardiac adaptations and growth factor formation in pressure- and volume-overload hypertrophy.

نویسندگان

  • P A Modesti
  • S Vanni
  • I Bertolozzi
  • I Cecioni
  • G Polidori
  • R Paniccia
  • B Bandinelli
  • A Perna
  • P Liguori
  • M Boddi
  • G Galanti
  • G G Serneri
چکیده

To investigate the time sequence of cardiac growth factor formation, echocardiographic and hemodynamic measurements were performed at scheduled times, and mRNAs for angiotensinogen, prepro-endothelin-1 (ppET-1), and insulin-like growth factor I (IGF-I) were quantified with RT-PCR and localized with in situ hybridization in pigs (fluothane anesthesia) by use of pressure or volume overload (aortic banding and aorta-cava fistula, respectively). Relative peptide formation was also measured by radioimmunoassay. In pressure overload, angiotensinogen and ppET-1 mRNA overexpression on myocytes (13 times vs. sham at 3 h and 112 times at 6 h, respectively) was followed by recovery (12 h) of initially decreased (0.5-6 h) myocardial contractility. In volume overload, contractility was not decreased, the angiotensinogen gene was slightly upregulated at 6 h (6.7 times), and ppET-1 was not overexpressed. IGF-I mRNA was overexpressed on myocytes (at 24 h) in both volume and pressure overload (14 times and 37 times, respectively). In the latter setting, a second ppET-1 overexpression was detectable on myocytes at 7 days. In conclusion, acute cardiac adaptation responses involve different growth factor activation over time in pressure versus volume overload; growth factors initially support myocardial contractility and thereafter induce myocardial hypertrophy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic changes of hemodynamic parameters and cardiac transcription of sirtuins in adaptive and mal-adaptive phases of pressure overload-induced hypertrophy in rats

Introduction: The aim of the study was to investigate the structural and hemodynamic changes as well as cardiac transcriptional profile of the key regulatory proteins, sirtuins family (SIRT1-7), in adaptive and mal-adaptive phases of left ventricular hypertrophy (LVH). Methods: LVH was induced in male Wistar rats (190±20g) by abdominal aortic banding. The third and sixteenth weeks post-surgery ...

متن کامل

Resveratrol Suppresses Cardiac Renin Angiotensin System in the Late Phase of Left Ventricular Hypertrophy

Background and objectives: Resveratrol(3,5,4′-trihydroxy-trans-stilbene) is a natural polyphenole phytoalexin which exerts potential cardioprotective effects, but the cellular and molecular mechanisms responsible for these effects are still unknown. Cardiac renin angiotensin system (RAS) over-activation plays an important role in pathogenesis of left ventricula...

متن کامل

1, 25 Dihydroxyvitamin D3 Protects the Heart Against Pressure Overload-induced Hypertrophy without Affecting SIRT1 mRNA Level

Background and Aims: There has been scant information concerning antihypertrophic effects of vitamin D specifically on its cellular and molecular mechanisms. Sirtuin 1 (SIRT1) is regarded as a key deacetylase enzyme in cardiomyocytes which applies potential cardioprotective effects by functional regulation of different proteins. This study aimed to evaluate the effects of 1, 25-dihydroxyvitamin...

متن کامل

Adapter molecule DOC-2 is differentially expressed in pressure and volume overload hypertrophy and inhibits collagen synthesis in cardiac fibroblasts.

DOC-2 (differentially expressed in ovarian carcinoma) is involved in Ras-, beta-integrin-, PKC-, and transforming growth factor-beta-mediated cell signaling. These pathways are implicated in the accumulation of extracellular matrix proteins during progression of hypertrophy to heart failure; however, the role of DOC-2 in cardiac pathophysiology has never been examined. This study was undertaken...

متن کامل

Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload.

Fibroblasts, which are the most numerous cell type in the heart, interact with cardiomyocytes in vitro and affect their function; however, they are considered to play a secondary role in cardiac hypertrophy and failure. Here we have shown that cardiac fibroblasts are essential for the protective and hypertrophic myocardial responses to pressure overload in vivo in mice. Haploinsufficiency of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 279 3  شماره 

صفحات  -

تاریخ انتشار 2000